КЛЕТКА. ОРГАНЕЛЛШЫ.

Клетка - элементарная живая система, лежащая в основе строения и развития организмов. История открытия клетки. Основные положения клеточной теории.

Современные методы исследования клетки. Прокариотическая и эукариотическая клетки. Сходства и отличия. Основные структурные компоненты эукариотической клетки: наружная клеточная мембрана, цитоплазма и ядро. Строение и функции. Органеллы и включения цитоплазмы. Строение и функции. Сходство и различие между растительными и животными клетками.

Цитология (греч. "cytos"-клетка, "logos"-наука) — наука о клетке, изучающая строение и функции клеток, их размножение, развитие и взаимодействие в многоклеточном организме.

Клетка – структурно-функциональная единица живого.

Ее изучение тесно связано с открытием и использованием микроскопа и улучшением техники микроскопирования. Первый простой микроскоп появился в конце XVI столетия (1590г.) в Голландии (Гансом и Захарием Янсенами. Корнеллиус Дреббель создал на основе их микроскопа — сложный микроскоп, который получил распространение в Европе, которым и воспользовался Роберт Гук). В 30-х гг XX в был изобретен электронный микроскоп.

- **Термина "клетка"** впервые применил английский физик *Роберт Гук*. Рассматривая в микроскоп тонкий срез **пробки бузины**, Гук увидел, что она (пробка и сердцевина бузины) состоит из ячеек эти ячейки он и назвал «клеткой». Фактически он увидел только оболочки растительных клеток.
- Антонии Ван Левенгук усовершенствовал микроскоп и увидел живых одноклеточных в капле воды. Кроме того он первым открыл сперматозоиды и эритроциты.
- Академик РАН *Карл Бэр* открыл **яйцеклетку** млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки и этой клеткой является зигота.
- *Р.Браун* в 1831г. обнаружил **ядро.**

Опираясь на многочисленные данные и собственные исследования, немецкий ботаник *Маттиас Шлейден* сделал важный вывод о клеточной организации растений. Немецкий физиолог *Теодор Шванн* на основе исследований зоологических объектов и данных его предшественников утвердил важнейшее достижение теоретической биологии: клетка является элементарной единицей строения и развития всех растительных и животных, организмов (1839).

!!!

М. Шлейден и Т. Шванн в 1839 г. сформулировали клеточную теорию.

Это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмах.

Основными <u>исходными</u> положениями **клеточной теории** были следующие:

- все ткани состоят из клеток;
- клетки растений и животных имеют общие принципы строения, так как возникают одинаковыми путями;
- каждая отдельная клетка самостоятельна, а деятельность организма представляет собой сумму жизнедеятельности отдельных клеток.
- *Рудольф Вирхов:* «клетка от клетки» клетка может происходить только от клетки в результате ее деления. Именно он показал, что развитие патологических процессов в организме связано с нарушением жизнедеятельности клеток.

Основные положения клеточной теории (по Ченцову Ю.С., 2004).

- 1. **Клетка элементарная структурно-функциональная единица живого**, вне клетки нет жизни.
- 2. Клетка единая система, включающая множество закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц органелл или органоидов.
- 3. Все клетки гомологичны (сходны) по своему строению, химическому составу и основным свойствам.
- 4. Клетки увеличиваются в числе путем **деления исходной клетки** после удвоения ее генетического материала (ДНК): клетка от клетки.
- 5. **Многоклеточный организм** представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
- 6. Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию к дифференцировке.

Значение клеточной теории:

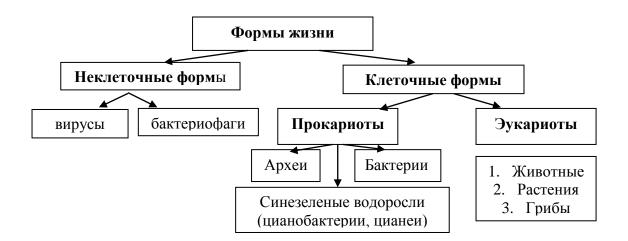
- доказательство единства клеточной организации и общности происхождения растений и животных (всего органического мира);
- сыграла огромную роль в развитии всех разделов биологии, особенно гистологии, эмбриологии, физиологии клетки, эволюционного учения, генетики;
- на ее основе сложилось и развивалось учение о болезненных процессах у животных, растений и человека.
- помогла объяснить основные закономерности живой природы с материалистических позиций.

!!!

клетка — это элементарная открытая биологическая система, способная к самообновлению, самовоспроизведению и развитию.

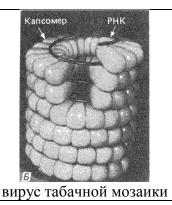
Методы биологический исследований

Метод исследования — это способ научного познания действительности.


Методы исследования применяются только в определенных случаях и для достижения определенных пелей

целей.		
Методы:		
 общие методы исследования (как биологические, так и других наук): эксперимент, наблюдение, описание, сравнение, моделирование. 	 частные, относящиеся к конкретному разделу. методы цитологии: микроскопия (оптическая, электронная и др), методы генетики: цитогенетический, генеалогический, гибридологический и т. д. 	

Me	тоды цитологии			
1.		Микроскопия		
	Оптическая	(увеличение -8000 раз, минимальный размер объекта -0.2 мкм).		
1 1		Возможности:		
` '		- изучение структуры клетки: ядро, оболочка, хлоропласты,		
-		- движение цитоплазмы,		
- изучение о		- изучение особенностей фаз митоза на фиксированном препарате (микро-		
скопия)		скопия)		
Электронная (увеличение – 100 000 раз, толщина препа		(увеличение – 100 000 раз, толщина препаратов не больше 500 х 10-8 см).		
		Изучение рибосом, плазматической мембраны.		
	Флуоресцентная	– для изучения микроструктур клетки используют специальные флуорес-		
	микроскопия	центные (светящиеся) красители и флуоресцентный микроскоп.		
	Туннельная микро-	– алмазная игла сканирует препарат. В момент перекрывания электронных облаков иглы и		
	скопия	молекул препарата компьютер регистрирует скачок электрического тока. После анализа по-		
		лученных данных компьютер строит изображение на экране дисплея (разрешение – отдельные атомы).		
	Сканирующая мик-	 использование сканирующего электронного микроскопа для получения объёмных изоб- 		
	роскопия	ражений клетки.		
	Фазово-контрастная	- получение изображений прозрачных объектов с помощью оптического микроскопа за счет		
	микроскопия	сдвига фаз электромагнитных волн.		
	Интерференционная микроскопия	– наблюдение неокрашенных прозрачных структур и вычисление их сухой массы.		
	микроскопия			
2.		Физико-химические методы		
	V			
	Хроматография	– метод, основанный на разной скорости движения через адсорбент раство-		
		ренных в специальном растворе веществ; при пропускании такого раствора		
		через адсорбент каждое вещество из смеси передвигается на определенное		
		расстояние в зависимости от своей молекулярной массы (в качестве адсор-		
		бента используют волокна фильтровальной бумаги, порошок целлюлозы и		
		др.).		
Напр., разделение основных пигментов из экстракта листьев.		папр., разделение основных нин ментов из экстракта листвев.		
		Известно, что в растительных клетках присутствуют два вида хлорофилла:		
		ходимо разделить эти два пигмента. Какой метод он должен использовать		
для их разделения? На чём основан этот метод? ОТВЕТ.		для их разделения? На чём основан этот метод?		
	 Целесообразно применить метод хроматографии. Метод основан на разной скорости движения веществ смеси через а, сорбент в зависимости от их молекулярной массы. 			
	Биохимический	 основной метод в биохимии из основных методов диагностики различ- 		
	метод ных заболеваний, которые вызывают нарушение обмена веществ			
	метод	ми диагностики биохимического анализа являются: кровь; моча; пот и дру-		
		гие биологические жидкости; ткани; клетки. Биохимический метод исследо-		
		вания позволяет определять активность ферментов, содержание продуктов		
	метаболизма в различных биологических жидкостях, а также выявлять нарушения в обмене веществ, которые обусловлены наследственным ф			
	ром.			
	Метод мечен-	 введение радиоактивного изотопа какого-либо химического элемента в со- 		
	ных атомов	став вещества для того, чтобы проследить путь его превращений в клетке.		
		Используют для изучения метаболизма.		
		Например, с его помощью можно установить скорость прохождения ве-		
		ществ через клеточную мембрану при исследовании функции щитовидной		
		железы. Для этого пациенту необходимо ввести порцию радиоактивного йо-		
		да, а затем определять его количество в щитовидной железе через 2, 6 и 24		
1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		


часа. Метод основан на том, что по химическим свойствам изотопы одного и того же элемента не отличаются друг от друга, но радиоактивное излучение позволяет отследить этапы перемещения радиоактивного элемента (йода) и скорость его накопления в клетках железы. Позволяет (совместно с центрифугированием) экспериментально доказать, что ДНК реплицируется полуконсервативным путем Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
позволяет отследить этапы перемещения радиоактивного элемента (йода) и скорость его накопления в клетках железы. Позволяет (совместно с центрифугированием) экспериментально доказать, что ДНК реплицируется полуконсервативным путем Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
скорость его накопления в клетках железы. Позволяет (совместно с центрифугированием) экспериментально доказать, что ДНК реплицируется полуконсервативным путем Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Центрифугирование Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
Позволяет (совместно с центрифугированием) экспериментально доказать, что ДНК реплицируется полуконсервативным путем Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Центрифугирование Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
что ДНК реплицируется полуконсервативным путем Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Центрифугирование Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
Полуконсервативный способ репликации ДНК был доказан с помощью изотопа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Центрифугирование Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
топа N15 и последующего разделения смеси ДНК на две фракции с двумя изотопами азота и N14. 4. Центрифугирование Вание Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
 4. Центрифугирование Вание Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
4. Центрифугиро- вание Избирательно выделять органоиды можно только при центрифугировании: разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
разрушенные клетки помещают в центрифугу — прибор, в котором пробирки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
ки с клеточным материалом вращаются на очень высокой скорости. Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
Разные клеточные структуры имеют различные массу, размеры и плотность, поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
поэтому под действием центробежной силы в растворах определенных веществ (например, сахарозы или хлорида цезия) они оседают с разной скоростью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
ществ (например, сахарозы или хлорида цезия) они <u>оседают с разной скоростью</u> и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
стью и останавливаются в определенном слое жидкости, что дает возможность отделить одни частицы от других. Таким методом отделяют митохон-
ность отделить одни частицы от других. Таким методом отделяют митохон-
± 7
дрии, рибосомы и другие органоиды клетки.
Используют для выделения разных компонентов клетки и их исследования.
Например, мелкие и крупные рибосомы, митохондрии; клетки крови.
5. Метод рекомби- – изучение тонких механизмов клеточных процессов, функций генов путем
нантных ДНК встраивания ДНК исследуемых объектов в генетический аппарат бактерий
или вирусов (генная биоинженерия).
6. Метод рентгено- дает возможность определять пространственное расположение и физические
структурного свойства молекул (например, ДНК, белков), входящих в состав клеточных
анализа структур.
7. Микроклональ- Этот метод применяется для выращивания культур клеток и тканей расте-
ное размноже- ний. Некоторое количество клеток помещают в питательную среду и выра-
ние (растений) шивают определенное время. При добавлении гормонов, обеспечивающих
рост и дифференцировку клеток, получают рассаду растений, которые потом
высаживают на поля.
8. Метод культуры – изучение живых клеток под микроскопом вне организма (рост, размноже-
клеток и тканей ние, выделение факторов роста, получение клеточных гибридов и др.).
9. Цитогенетиче- — определение наследственного материала клетки (кариотипа - число и
ский метод (ка- структуру хромосом) на стадии метафазы деления.
риотипирова- Позволяет установить пол и выявить хромосомные заболевания, связанные с
ние геномными (изменение числа хромосом: с-м Дауна) и хромосомными мута-
циями (отрыв плеча хромосомы).

Неклеточные формы жизни

Вирусы — это <u>неклеточные формы жизни</u>, которые являются <u>облигат-</u> <u>ными внутриклеточными паразитами</u>, т.е. они могут функционировать только внутри клетки. Вне клетки они называются — вирионы.

только внутри клетки. Вне клетки они называются – вирионы.		
есть		
Наследственность		
Изменчивость		
Размножение		

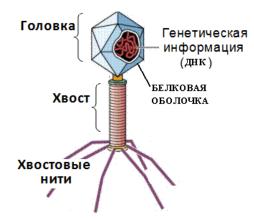
Первый вирус – вирус мозаичной болезни табака, поражающий хлоропласты растительных кле-

ток, открыл в 1892 г. русский ученый Дмитрий Иосифович Ивановский.

Вирусы очень мелкие (можно увидеть в электронный микроскоп).

Строение очень простое

(см. вирус табачной мозаики):


- о **генетический материал**: либо ДНК либо РНК, составляющей сердцевину вируса,
- о **капсид** белковая оболочка, окружающая эту сердцевину. В ее состав дополнительно могут входить липиды и углеводы.

РНК-содержащие (ретровирусы)	ДНК- содержащие
• вирус табачной мозаики,	• аденовирус,
 грипп, 	• герпес,
• корь,	• оспа.
• бешенство,	
• энцефалит,	
• краснуха,	
• вирус иммунодефицита человека (ВИЧ).	

БАКТЕРИОФАГИ - вирусы, поражающие клетки бактерий.

Тело бактериофага состоит из

- **> белковой головки**, <u>содержит вирусную генетическую информацию</u> (ДНК),
- **хвост**, покрытого сократительным чехлом (хвостовой чехол), по которому <u>перемещается генетический материал (ДНК)</u> от вируса к бактериальной клетке.
- ➤ На конце хвоста располагаются хвостовые отростки (нити), служащие для закрепления на поверхности клетки бактерии, и фермент, разрушающий бактериальную стенку.

!!! Жизненный цикл (размножение) вируса

РНК-вирус
1. Прикрепление вируса к клетке-
хозяина,
2. Проникновения внутрь.
3. Синтез с вирусной РНК вирусной
ДНК (обратная транскрипция):
РНК-вируса→ДНК-вируса.
4. Встраивание вирусной ДНК в ДНК-
хозяина.
5. Синтез вирусных частиц (синтез
белков и нуклеиновых кислот)
клеткой-хозяина
6. Выход вируса из клетки-хозяина и
поражение других клеток.

При этом вирусы могут «забирать» фрагмент ДНК хозяина. После не-	
скольких таких циклов клетка погибает. При заражении некоторыми ви-	İ
русами, клетки не разрушаются, а наоборот начинают усиленно делить-	
ся (может стать причиной онкологии).	
Ірикрепление к клетке хозяина → внедрение ДНК вируса в	П
птис	i

Прикрепление к клетке хозяина \rightarrow внедрение ДНК вируса в клетку хозяина \rightarrow встраивание в ДНК хозяина \rightarrow транскрипция (синтез иРНК) \rightarrow трансляция (синтез белков, в том числе и вирусных) \rightarrow выход вируса из клетки

Прикрепление к клетке хозяина → внедрение РНК вируса в клетку хозяина → обратная транскрипция (с РНК вируса синтезируется ДНК вируса) → встраивание в ДНК хозяина → транскрипция (синтез иРНК) → трансляция (синтез белков, в том числе и вирусных) → выход вируса из клетки

Значение вирусов и фагов:

- 1) Возбудители заболеваний человека, животных, растений (см.выще).
- 2) Объект нанобиотехнологии (генной и клеточной инженерии).
- 3) Бактериофаги могут использоваться как лекарства против возбудителей бактериальных инфекционных заболеваний (холеры, брюшного тифа и др.).
- 4) Фактор эволюции (источник комбинативной изменчивости трансдукция, источник мутаций).
- 5) Регулируют численность видов (т.к. паразиты).
- 6) Для борьбы с вредителями (биологический способ).
- 7) Биологическое оружие.

Клеточные формы жизни: Прокариоты и эукариоты.

Прокариоты

Прокариоты (от греч. *про* – до и *карион* – ядро) – это доядерные клетки не имеющие оформленного ядра.

Появились на Земле около 3,5 млрд лет назад.

Клетки прокариот имеют небольшие размеры, их диаметр составляет $0,3-5-\underline{10}$ мкм. $(1 \text{мм}=10^3 \text{мкм}=10^6 \text{нм}).$

!!! Строение прокариот_(рис.1).

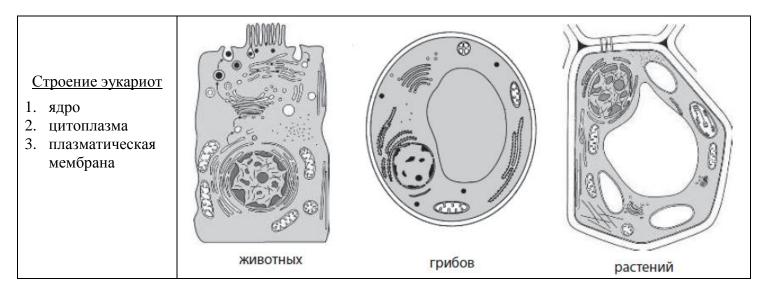
- 1. генетический материал (нуклеоид, ДНК)
- 2. цитоплазма
- 3. плазматическая мембрана
- 4. клеточная стенка.
- 5. жгутик.

4. Нуклеоид

- 8. Рибосома
- 1) Генетический материал находится непосредственно <u>в цитоплазме</u> в виде **кольцевой молекулы** Д**НК**, которая НЕ окружена ядерной оболочкой. Место расположения ДНК в цитоплазме наз. *нук- леоид*.
- 2) В цитоплазме (жидкая часть клетки) прокариот можно обнаружить:
 - о Органеллы (органоиды) у прокариот <u>незначитель</u>ны, у них нет мембранных органелл.
 - **Рибосомы** 70 S типа («мелкие») немемьранные органеллы, участвующие в синтезе белков.
 - <u>Мезосомы</u> <u>выросты плазматической мембраны</u>, содержащие ферменты, участвующие в фотосинтезе, в процессах дыхания, синтезе ДНК и секреции белка (т.е мембрана окружает какой-то процесс).
 - Плазмиды это небольшая кольцевая молекула ДНК, лежащие вне нуклеоида. Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

- 3) Плазматическая мембрана покрыта **клеточной стенкой**. Имеет более простое строение, чем у эукариот. Состоит из комплексов <u>белков и олигосахаридов</u>, уложенных слоями, защищает и отграничивает клетку и поддерживает ее форму. В состав клеточной стенки входи **муреин**.
- 4) Жгутик более просто устроен.

По форме различают: округлые – кокки; извитые – вибрионы; палочковидные бациллы; спиральные – спириллы. (более подробно в ботанике).


!! Примеры бактерий человека:

- Кишечная палочка живет в кишечнике человека (симбиоз по типу мутуализма), «помогает» переваривать клетчатку, участвует в синтезе витаминов В, К, др.
- Стафилококки и стрептококки вызывают воспалительные заболевания человека.
- Холерные вибрионы возбудители холеры.
- Спирохеты возбудители сифилиса, возвратного тифа, лептоспироза и др.
- Туберкулезная палочка возбудитель туберкулеза.
- Чумная палочка возбудитель чумы.
- - и др.

Эукариоты.

Эукариоты (от греч. 9y – истинный, $\kappa apuon$ – ядро) – <u>истинно ядерные</u>. Они появились на Земле примерно 1,5 млрд лет назад.

Диаметр клеток эукариот составляет 5-80-100 мкм.

Сходства про- и эукариот:

- клетки прокариот и эукариот содержат **генетическую информацию**, представленную нуклеиновой кислотой (ДНК или РНК),
- окружены плазматической мембраной,
- снаружи от которой во многих случаях имеется клеточная стенка.
- Внутри клетки находится полужидкая цитоплазма.
- В цитоплазме имеются рибосомы.

Однако клетки прокариот устроены значительно проще, чем клетки эукариот.

Отличие прокариот от эукариот

Признак	Прокариоты	Эукариоты
Организмы	Бактерии и цианобактерии (синезеленые водоросли)	Простейшие, грибы, растения, животные.
Клеточная органи- зация	В основном, одноклеточные	В основном, многоклеточные, с выраженной дифференцировкой клеток и тканей
Размер клеток	1-10 мкм	10-100 мкм
Метаболизм или энергетический об- мен	Аэробный или анаэробный	Аэробный
Органеллы	Малочисленные, нет мембранных (их функцию выполняют мезосомы)	Многочисленные
Рибосомы	Имеются мелкие (70s)	Имеются 70s в органеллах, в цито- плазме 80s
Синтез РНК и белка	В цитоплазме	Разделен: транскрипция в ядре, трансляция в цитоплазме
Ядерная оболочка	Отсутствует	Имеется, состоит из двух мембран
Ядрышко	Отсутствует	Имеется
Генетический материал	Кольцевая ДНК, образующая нуклеоид	ДНК имеет линейную структуру связанную с белками и на определенном этапе организуется в хромосомы
Клеточная стенка	Имеется, жесткая. Состоит из аминосахаров и мурамовой кислоты (муреина)	У животных клеток - отсутствует, у растений имеется, но состоит из целлюлозы
Капсула Имеется		Отсутствует
Цитоскелет	Отсутствует	Имеется
Способ поглощения ве- ществ и их выделение	Адсорбция через мембрану	Фагоцитоз, пиноцитоз Экзоцитоз, эндоцитоз
Деление клеток	Бинарное (деление пополам)	Митоз, мейоз, гаметогенез
Жгутики	Простые, состоят из одной или нескольких нитей белка (флагеллина)	Сложные, состоят из микротрубочек (белок – тубулин)

Сходство и различие между растительными и животными клетками.

!!! Общие признаки для животной и растительной клетки:

- 1. Единство структурных систем ядро, цитоплазма, мембрана.
- 2. Сходство процессов обмена веществ и энергии.
- 3. Единство принципов наследственного (генетического) кода.
- 4. Универсальное мембранное строение жидкостно-мозаичная модель мембран.
- 5. Единство химического состава.
- 6. Сходство процессов деления клеток.

структуры РАСТИТЕЛЬНОЙ структуры ЖИВОТНОЙ клетки:		
клетки:		
1. ядро	1. ядро	
2. цитоплазма	2. цитоплазма	
3. цитоплазматическая мембрана	3. цитоплазматическая мембрана	
4. клеточная стенка (целлюлозная)	У животных клеток клеточная стенка отсутствует, но	
	наружный слой плазматической мембраны обогащен угле-	
	водными компонентами - этот слой гликокаликса.	

отличия

Признак	Растительная клетка	Животная клетка	Грибы
Клеточная	Имеется и состоит из целлю-	отсутствует	Имеется в состав входит
стенка	лозы		хитин
Вакуоли	Имеются.	Нет вакуолей с клеточным	Имеются мелкие
	Крупные полости, заполнен-	соком.	
	ные клеточным соком —		
	водным раствором различ-	Обычно мелкие вакуоли	
	ных веществ, являющихся	(везикулы): сократитель-	
	запасными или конечными	ные, пищеварительные, вы-	
	продуктами. Осмотические	делительные вакуоли.	
	резервуары клетки.		
Расположение	По периферии клетки	Равномерно по всей клетке	Равномерно по всей
цитоплазмы			клетке
Расположение	На периферии	В центральной части	Ядер много и они рас-
ядра			пределены по всей ци-
			топлазме
Пластиды	Имеются лейкопласты, хло-	Отсутствуют	Отсутствуют
	ропласты, хромопласты		
Реснички,	Как правило отсутствуют	Имеются	Отсутствуют
жгутики	(нет у высших растений)		
Клеточный	Как правило отсутствуют	Имеются	Имеются
центр (цен-	(нет у высших растений)		
триоли)			
Способ пита-	Автотрофный (фототроф-	Гетеротрофный (сапро-	Гетеротрофный (сапро-
ния	ный, хемотрофный)	трофный, паразитический).	трофный, паразитиче- ский).
Синтез АТФ	В хлоропластах, митохон-	В митохондриях	В митохондриях
	дриях		
Расщепление	В хлоропластах и всех частях	Во всех частях клетки, где	Во всех частях клетки,
ΑΤΦ	клетки, где необходимы за-	необходимы затраты энер-	где необходимы затраты
	траты энергии	ГИИ	энергии
Включения	Запасные питательные	Запасные питательные	Имеются
	вещества в виде зерен крах-	вещества в виде зерен и ка-	
	мала, белка, капель масла;	пель (белки, жиры, углевод	
	вакуоли с клеточным соком;	гликоген); конечные про-	
	кристаллы солей	дукты обмена, кристаллы	
		солей; пигменты	
Зпасное пита-	Крахмал	Гликоген	Гликоген
тельное веще-			
ство			

Цитоплазма

Цитоплазма – это все содержимое клетки за исключением ядра.

Цитоплазма составляет основную массу клетки. Она на \approx 85% состоит из воды и на 10% - из белков. Остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений.

Основные компоненты цитоплазмы:

- 1. Гиалоплаза
- 2. Органеллы (органоиды)
- 3. Включения

Гиалоплазма (цитозоль, цитоплазматический матрикс).

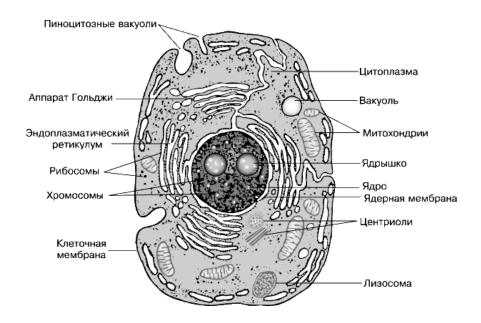
Это основное вещество клетки, ее истинная внутренняя среда. Это многофазная коллоидная система. Химический состав: до 90% воды, белки, аминокислоты, жирные кислоты, ионы, неорганические соединения, и др. вещества.

Включения

Это временные, непостоянные компоненты цитоплазмы клетки, которые образуются в результате жизнедеятельности клетки и расходуются по мере необходимости.

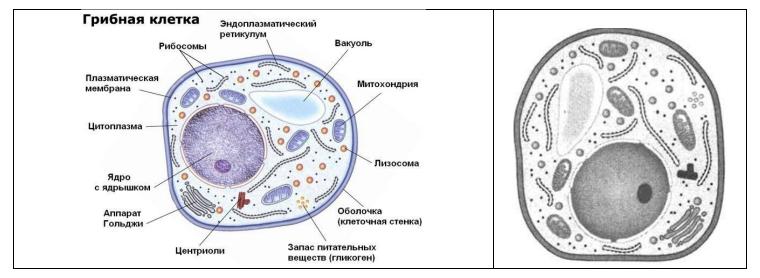
группа	пример	
трофические	Белки - алейроновые зерна в злаковых растениях.	
	Капли жира – в липоцитах	
	Углеводы – гликоген в гепатоцитах и миоцитах, крахмал в растениях.	
секреторные	Образуются секреторными клетками: ферменты, гормоны	
экскреторные	В животных клетках – соли различных кислот в растворенном состоянии, в рас-	
	тительных клетках – кристаллы солей.	
пигментные	Меланин в меланоцитах, гемоглобин в эритроцитах, биллирубин	

Органеллы (органоиды)


Это постоянные структурные компоненты цитоплазмы клетки, которые имеют определенное строение и выполняют определенные функции.

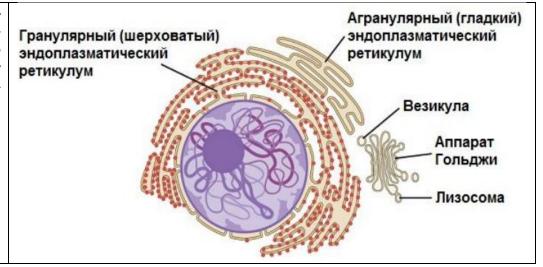
Классификация органелл по строению			
Мембранные		Немембранные	
одномемранные	одномемранные двумембранные		
 ЭПС (гладкая и шероховатая) Аппарат Гольджи Лизосомы Вакуоль 	 Ядро Митохондрии Пластиды (хлоропласты, лейкопласты, хромопласты) 	- Рибосомы - Клеточный центр (центриоли) - Жгутики - Реснички - Микротрубочки - Микрофиламенты - микрофибрилы	

Классификация органелл по значению в жизнедеятельности клетки				
Общие (у всех клеток)	Специальные			
Митохондрии	Реснички			
ЭПС	Жгутики			
Аппарат Гольджи	Миофибриллы			
Клеточный центр	Базальные складки			
Рибосомы	Тонофибриллы Нейрофибриллы			
Цитоскелет (микротрубочки, микрофиламенты, промежуточные филаменты	Псирофиориллы			


«Классификация органелл по выполняемым функциям»

«классификация органелл по выполняемым функциям»				
Функции	Органеллы			
1. Органеллы, образующие цитоскелет клетки	Микротрубочки, микрофиламенты, микро-			
	фибриллы			
2. Органеллы, участвующие в движении клетки и внут-	Реснички, жгутики			
риклеточных структур				
3. Органеллы, участвующие в биосинтезе веществ	Рибосомы, ЭПС			
4. Органеллы, участвующие в энергопроизводстве	Митохондрии, пластиды (растительные			
	клетки)			
5. Органеллы, участвующие в пищеварении, защитных и	Лизосомы, пероксисомы			
в обезвреживающих реакциях				
6. Органеллы, участвующие в накоплении и транспорте	Аппарат Гольджи, ЭПС			
веществ				

Растительная клетка Животная клетка Грибная клетка


Эндоплазматическая сеть

(одномембранная органелла общего значения, участвующая в биосинтезе веществ, в накоплении и транспорте веществ).

Это система многочисленных канальцев и полостей пронизывает всю гиалоплазму. ЭПС берет начало от наружной ядерной мембраны.

Выделяют два типа ЭПС:

- шероховатая
- гладкая

Шероховатая (гранулярная) ЭПС. На ее мембранах находятся **рибосомы**, которые придают ей шероховатый вид.

Функция гранулярной ЭПС: синтез белка (за счет рибосом) и его транспортировка к аппарату Гольджи.

Гладкая ЭПС. Без рибосом на ее поверхности. На ее мембранах локализованы ферментные системы жирового и углеводного обмена, депонирование ионов кальция.

Функция гладкой ЭПС: синтез и расщепление жиров и углеводов, и их транспортировка.

По каналам ЭПС идет транспорт веществ, как синтезированных в клетке, так и поступивших из вне. Выраженность сети неодинакова как для различных клеток, так и внутри одной клетки. Как правило, они образуют скопления, или зоны.

Аппарат Гольджи или Пластинчатый комплекс

(одномембранная органелла общего значения, участвующие в накоплении и транспорте веществ)

Открыты итальянским ученым Камилло Гольджи.

Состоит из 5-7 **мембранных полостей** — «цистерн», которые расположены друг над другом образуя «стопки». Цистерны переходят в систему тонких ветвящихся трубочек на концах которых образуются мелкие везикулы (пузырьки). Совокупность цистерн и везикул, образует структурную единицу аппарата Гольджи — диктиосому.

Функции аппарата Гольджи:

- принимает транспортные пузырьки от ЭПС,
- модифицирует липиды,
- участвует в дозревании белков,
- в сборке мембран,
- упаковывает вещества подлежащие секреции и экскреции,
- участвует в образовании лизосом, пероксисом.

Следовательно, большое количество данного органоида встречается в клетках <u>интенсивно синтезирующих</u> стероидные гормоны липидной природы и выводит их наружу.

Лизосомы

(одномембранные органеллы общего значения, участвуют во внутриклеточном пищеварении, в защитных и обезвреживающий реакциях).

Лизосомы представляют собой **пузырьки** диаметром 0,2-0,8 мкм, ограниченные одиночной мембраной.

Каждая лизосома содержит около 40-50 видов различных <u>гидролити</u>ческих ферментов в дезактивированном (неактивном) состоянии.

Функции лизосомы:

- участвуют во внутриклеточном пищеварении,
- в защитных
- и обезвреживающий реакциях

Виды лизосом:

- *Первичная лизосома* — одномембранный пузырек, содержащий ферменты, образовавшийся в аппарате Гольджи.

Этапы образования первичной лизосомы:

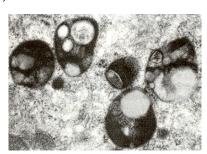
- 1. В ядре на основе определенного гена ДНК в ходе транскрипции синтезируется информационная РНК, которая пройдя через ядерную пору взаимодействует с рибосомами шероховатой ЭПС.
- 2. В ходе трансляции рибосомы синтезирует первичную структуру белка (полипептид).
- 3. первичная структура белка по каналам шероховатой ЭПС транспортируется у аппарату Голтджи.
- 4. **В аппарате Гольджи** в ходе модификации белки приобретают вторичную, третичную, четверичную структуру. Сформированные белки стекают в концевые части пузырьки, мешочки, которые отрываются от мембран аппарата Гольджи и идут в цитоплазму.
- 5. Такой пузырек, покрытый мембраной и содержащий ферменты, называется первичной лизосомой. Они всегда имеются в цитоплазме клетки.
- **Вторичная лизосома** пузырек, содержащий субстрат и ферменты для его переваривания. Образуется в ходе слияния первичной лизосомы и фагосомы.

На начальных этапах фагоцитоза, в результате проникновения подлежащего расщеплению субстрата в клетку, образуется **фагосома**. Это пузырек с поглощенным телом.

В цитоплазме фагосома взаимодействует с первичной лизосомой. В точке слипания оболочки расплавляются и лизосома изливает в фагосому ферменты.

В результате слияния фагосомы и первичной лизосомы образовалась вторичная лизосома. Она содержит субстрат и ферменты.

В зависимости от субстрата фаголизосома может быть:


- <u>гетерофагосома</u> содержат чужеродные частицы (например, бактерии);
- аутофагосома или аутолизосомы содержат фрагменты или целые структуры клеток данного организма.

В процессе перевыривания происходит расщепление субстрата на:

- о <u>«нужные»</u> клетке компоненты, которые всасываются в цитоплазму и включаются в различные синтетические и обменные процессы (например аминокислоты идут на построение собственных белков);
- «ненужные» клетке компоненты, которые остаются в лизосоме, где уже нет ферментов (они израсходовались в процессе расщепления субстрата) – это третичная лизосома, которая представляет собой <u>остаточное тельце (телолизосома)</u>.

Телолизосома по своим свойствам относится к экскреторным включениям и подлежит удалению из клетки в ходе экзоцитоза.

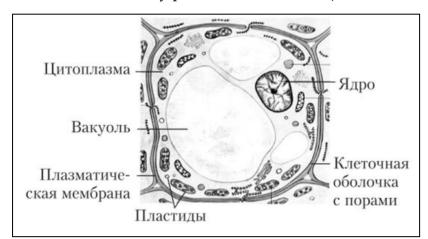
В некоторых случаях (незавершенный фагоцитоз) остаточные тельца остаются в клетке вплоть до ее гибели.

Пероксисосомы

(одномембранные органеллы общего значения, участвуют в обезвреживающий реакциях).

По своему строению похожи на лизосомы, но их основные ферменты – каталаза и пероксидаза.

Эти ферменты участвуют в нейтрализации <u>перекисных соединений</u>, которые токсичны для клеток – следовательно функция пероксисом – защитная и обезвреживающая.


Вакуоль

(одномембранные органеллы общего значения у растительных клеток)

Вакуоль — заполненный **клеточным соком** одномембранный мембранный мешочек. Растительные клетки, как правило, имеют одну большую центральную вакуоль.

<u>Клеточный сок</u> - это концентрированный раствор:

- сахаров,
- минеральных солей,
- органических кислот,
- пигментов
- и других веществ.

Это своеобразный резервуар, в котором хранятся все необходимые вещества. Они помогают клетки успешно переживать все неблагоприятные периоды. В некоторых вакуолях накапливаются вторичные продукты обмена, например, алкалоиды, танины, млечный сок. Они выполняют не только запасающую, но и защитную функцию, отпугивая многих животных неприятным вяжущим вкусом.

В животных клетках могут наблюдаться <u>подобные</u> вакуолям небольшие структуры - везикулы, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции или это пульсирующие вакуоли и т.д.

Функции:

- 1. Поддержание тургора и осморегуляция;
- 2. Запас воды;
- 3. Накопление питательных веществ, солей, пигментов;
- 4. Выделительная (продукты метаболизма)
- 5. Окраска цветов

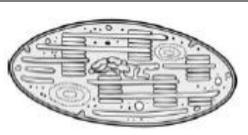
Пластиды – органеллы, свойственные только растительным клеткам. Они окружены двойной мембраной.

Пластиды делятся на

- хлоропласты, содержащие хлорофилл и осуществляющие фотосинтез,
- *хромопласты*, содержащие <u>пигмент</u> (красный, оранжевый и др.) и <u>окрашивающие</u> отдельные части растений в красные, оранжевые и жёлтые тона,
- и *лейкопласты*, <u>прозрачные</u> пластиды, приспособленные для <u>хранения питательных веществ</u>: белков (протеинопласты), жиров (липидопласты) и крахмала (амилопласты).

Пластиды

(двумбранные органеллы общего значения у растительных клеток)


Хлоропласты	Хромопласты	Лейкопласты
зеленые	красные, желтые, оранжевыея	бесцветные
в них содержится магнийсодер-	Они образуются в различных органах расте-	запасаются пита-
жащий пигмент - хлорофилл, для	ний, придавая им специфическую окраску,	тельные вещества
образования которого необходим	которая привлекает животных, способствуя	(крахмал, белки,
свет. Функция: фотосинтез.	опылению цветков и распространению семян.	липиды)

Хлоропласты

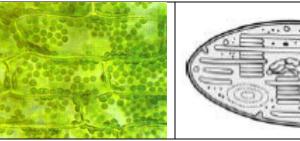
(двумембранные органеллы общего значения для растений, участвующие в процессе фотосинтеза).

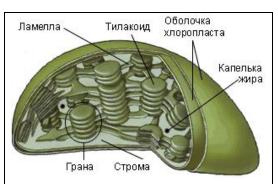
Хлоропласты - это фотосинтетические органоиды растительных клеток, содержащий главным образом пигмент - хлорофилл, расположенный в мембране гран. Их мембраны являются местом прохождения световых реакций фотосинтеза.

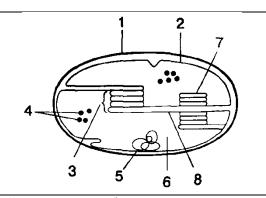
Именно хлоропласты поражаются вирусом мозаичной болезни табака.

Форма чаще линзовидная (двояковыпуклая), у водорослей они называются хроматофоры и имеют разную форму (чашеобразная, лентовидная и т.д.)

Строение хлоропласта.

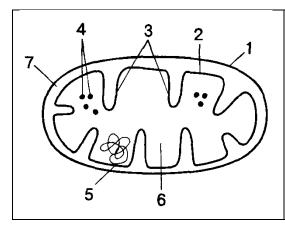

- 1) Наружная мембрана
- 2) Между мембранами находится межмембранное пространство.
- 3) Внутренняя мембраны.


Внутренняя мембрана образует «мешочки» тилакоиды двух типов:

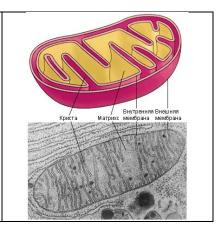

- Тилакоиды гран. Эти тилакоиды образуют стопки (от 10 до 150 тилакоидов в каждой) — граны (≈ 50 в клетке), расположенные в шахматном порядке.
 - !!! Граны это место прохождения световой фазы фотосинтеза.
- Тилакоиды стромы (межгранные тилакоиды, ламеллы).

В строме содержатся !!!:

- 4) Содержимое хлоропласта, ограниченное внутренней мембраной, заполнено стромой (матрикс) - гелеобразная масса растворенных белков, причем на 75% это вода.
 - 🖶 кольцевая ДНК, РНК
 - и рибосомы 70S (мелкие)


- 1) наружная мембрана,
- 2) внутренняя мембрана,
- 3) грана,
- 6) строма (место прохождения темновой стадии фотосинтеза),
- ДНК,
- 4) рибосома,
- 7) тилакоид граны,
- 8) тилакоид стромы
- т.е. имеется, как и у митохондрий, собственный генетический аппарат, следовательно, они (как и митохондрии) «полуавтономны» и могут синтезировать белки, необходимые для их деятельности.

В мембране тилакоида расположены белки, аналогичные белкам митохондрий, но участвующие в цепи переноса электронов в ходе фотосинтеза.


Митохондрии

(двумембранные органеллы, общего значения, выполняющие функцию энергопроизводства).

Митохондрии имеют вытянутую форму, их длина около 7 мкм $(1_{\text{MM}}=10^3_{\text{мкм}}=10^6_{\text{нм}})$, поэтому они видны в световой микроскоп.

- 1) наружная мембрана,
- 2) внутренняя мембрана,
- 5) ДНК,
- 4) рибосома,
- 6) матрикс,
- 7) межмембранное пространство,
- 3) криста

Строение митохондрий:

- 1. Наружная мембрана
- 2. Пространство между наружной и внутренней мембраной межмембранное пространство.
- 3. Внутренняя митохондриальная мембрана по площади больше чем наружная, что приводит к образованию <u>складок внутренней мембраны</u> **крист**.

Внутренняя мембрана (кристы) содержит ферменты дыхательного цепи (цепь транспорта электронов; это третий этап энергетического обмена энергетического обмена; кислородный этап).

- 4. Пространство, ограниченное внутренней мембраной называется **матриксом**. Он содержит, ферменты, **кольцевая ДНК**, РНК, **рибосомы 70S**.
- ! Благодаря наличию собственного генетического аппарата они (как и хлоропласты) способны размножаться и участвуют в биохимических процессах, репликации, транскрипции и трансляции.

НО! Этот синтез зависит от ядерной ДНК, поэтому они полуавтономны.

Размножение митохондрий (и хлоропластов) – происходит **путем бинарного деления.** Таким образом, они являются самовоспроизводящимися структурами.

Вместе с тем генетическая информация содержащаяся в их ДНК, не обеспечивает их всеми необходимыми для полного самовоспроизведения белками; часть этих белков кодируется <u>ядерными генами</u> и поступает в митохондрии из гиалоплазмы. Поэтому в отношении их самовоспроизведения называют <u>полуавтономными</u> структурами. У человека и других млекопитающих митохондриальный геном наследуется от матери, что определяет цитоплазматическую наследственность: при оплодотворении митохондрии спермия в яйцеклетку не проникают.

Основные функции митохондрии – синтез АТФ:

- 1. Митохондрии участвуют в процессах клеточного дыхания.
- **2.** Осуществляют <u>синтез АТФ</u> (т.е. преобразуют энергию, которая при этом выделяется, в форму, доступную другим структурам клетки). Поэтому их называют **«энергетическими станциями клетки».**
- 3. В них происходит процесс полного окисления низкомолекулярных органических соединений до неорганических (воды и углекислого газа).
- **4.** Т.к. наружная мембрана содержит ферменты липидного обмена участвует в преобразовании липидов.
- **5.** Имея собственную генетическую систему, способна синтезировать некоторые специфические белки и стероидные гормоны.

Количество, размеры и расположение митохондрий зависят от функции клетки, в частности от ее потребности в энергии и от места, где эта энергия расходуется.

Так, в одной печеночной клетке их количество достигает 2500.

Множество крупных митохондрий содержится в <u>кардиомиоцитах</u> (мышечные клетки сердца) и миоцитах мышечных волокон.

Много митохондрий в шейке сперматозоида, что обеспечивает их подвижность.

Клетки же жировой ткани содержат меньшее количество митохондрий и количество крист в них тоже незначительное.

Не содержащие митохондрий - эритроциты.

!! Происхождение митохондрий и пластид.

Митохондрии в процессе эволюции произошли от свободно живущих прокариотических клеток, что соответствует симбиогенетической теории возникновения эукариот.

В пользу этой теории имеется ряд доказательств:

- 🖶 рибосомы митохондрий более мелкие, чем рибосомы цитоплазмы;
- 🖊 как и прокариоты митохондрии размножаются путем бинарного деления;
- 🖶 химический состав мембраны так же имеет сходство.

Рибосомы

(немембранные органеллы общего значения, участвующие в биосинтезе веществ).

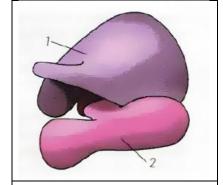
Рабочая рибосома, видимая только <u>в электронный микроскоп</u>, состоит из двух субчастиц: малой и большой.

Химический состав рибосом. В состав каждой субчастицы входят:

- рибосомальные РНК, синтезирующиеся в ходе транскрипции в ядре в области ядрышка (ядрошковый организатор вторичные перетяжки спутничных (13,14, 15, 21 и 22 пары хромосом)).
- белки.

<u>Объединение</u> малой и большой субчастиц происходит в цитоплазме, при взаимодействии малой субчастицы с <u>информационной РНК</u> во время трансляции.

Расположение:


А) у эукариот:

- Значительная часть рибосом (крупные) прикреплена к мембранам шЭПС и к наружной мембране ядерной оболочки.
- В митохондриях и хлоропластах мелкие рибосомы

Б) у прокариот:

• Мелкие рибосомы в цитоплазме.

В зависимости от органа, его функции количество рибосом колеблется от тысячи до сотни тысяч.

Малая субчастица имеет 2 центра:

- 1. Центр связывания с мРНК.
- 2. Участок, удерживающий тРНК.

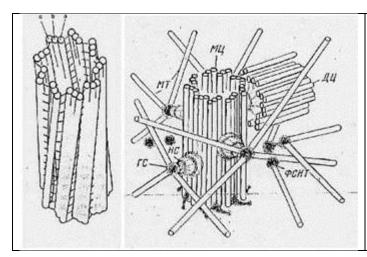
Большая субчастица так же имеет 2 центра.

- 1. <u>аминоацильный</u> («А» акцепторный, <u>центр узнавания амино-</u> <u>кислоты</u>)
- 2. <u>пептидильный</u> («П» донорный, <u>центр присоединения амино-кислоты</u> к пептидной цепочке).

Функция рибосом: <u>синтез</u> полипептидной цепочки <u>белка</u> (этап трансляции биосинтеза белка). Т.е. на них «мертвые» молекулы нуклеиновых кислот обретают жизнь.

Клеточный центр (центриоли)

(немембранные органеллы общего значения, участвующие в делении клеток).


Клеточный центр - совокупность <u>2 центриолей</u> (материнская и дочерняя, расположенные под углом 90^0 друг к другу) и центросферы (зона более светлой цитоплазмы, от которой отходят радиально тонкие фибриллы).

Каждая центриоль состоит из **микротрубочек**. Они образуют <u>девять</u> <u>триплетов</u>, расположенных по периферии. В результате чего образуется полый цилиндр ($9_{(3)}+0$). Все микротрубочки идут параллельно основной оси и связаны между собой фибриллярными нитями (белковые).

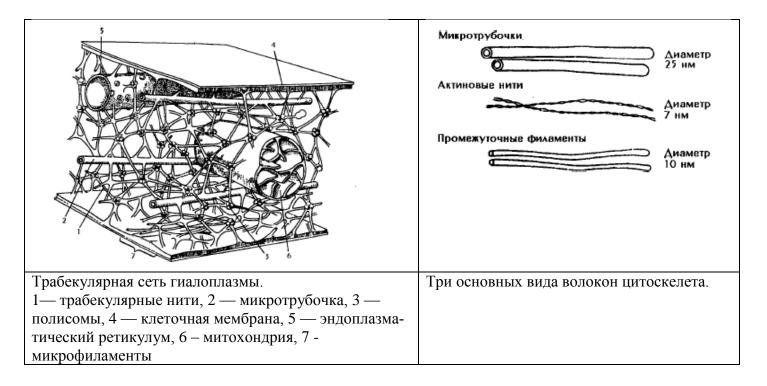
Центриоли характерны и **обязательны для клеток животных**, их <u>нет у высших растений</u>, у низших грибов и некоторых простейших.

Строение и активность центриолей меняется в зависимости от периода клеточного цикла (интерфаза или митоз). Перед деление количество центриолей удваивается и они расходятся к полюсам клетки и образуют микротрубочки веретена деления.

- 1. МЦ материнская центриоль
- 2. ДЦ дочерняя центриоль
- 3. МТ микротрубочки
- 4. ФСНТ фокусы схождения микротрубочек

Функции клеточного центра: построение веретена деления

Новообразование: образуются путем синтеза дочерних центриолей из материнской, путем дупликации.


Органеллы цитоскелета

Цитоскелет — опорно-двигательная система клетки, включающая <u>немембранные белковые</u> нитчатые образования, выполняющие как <u>каркасную</u>, так и <u>двигательную</u> функции в клетке.

Эти нитчатые или фибриллярные структуры являются динамическими образованиями, они могут быстро возникать в результате полимеризации их элементарных молекул и так же быстро разбираться, исчезать при деполимеризации. К этой системе относятся фибриллярные структуры и микротрубочки. Фибриллярные структуры цитоплазмы. К ним в эукариотических клетках относятся микрофиламенты (microfilamenti) толщиной 5—7 нм и так называемые промежуточные филаменты, или микрофибриллы (microfibrillae), толщиной около 10 нм.

В состав цитоскелета входят:

- о микротрубочки
- о микрофиламенты (напр., актиновые нити)
- о промежуточные филаменты (микрофибриллы)

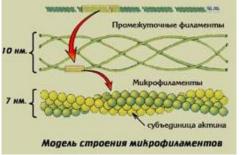
Микротрубочки

(немембранные органеллы специального значения, образующие цитоскелет клетки).

Это полые трубочки из глобулярного белка тубулина.

Функция зависит от вида микротрубочек:

- 1. Свободные МТ выполняют опорную функцию, участвуют в образовании цитоскелета и клеточной оболочки, определяют напрвление перемещения пузырьков и других структур клетки.
- 2. МТ, входящие в состав клеточных структур клеточный центр, жгутики, реснички.


Исходя из этого функции МТ в живых клетках:

- о принимают участие в создании ряда временных или постоянных структур: цитоскелет, веретено клеточного деления, реснички и жгутики, центриоли.
- о Т.к. они полые внутри них идет транспорт ионов, молекул и т.д. в различные точки клетки.
- о Многие органеллы в своем строении содержат микротрубочки: центриоли, базальные тельца.

<u>Новообразование:</u> центром организации микротрубочек являются_центриоли. Формируются в результате полимеризации белка тубулина.

<u>Микрофиламенты</u>

(немембранные органеллы специального значения, участвующие в движении клетки и клеточных структур).

 ${\rm M}\Phi$ представляют собой тонкие (диаметр 6 нм) белковые нити актина и миозина.

<u>Участвуют</u> в движении клетки в целом, в эндоцитозе, экзоцитозе, в образовании сократительного кольца при цитокинезе животной клетки, определяет форму клетки.

Реснички и жгутики

(немембранные органеллы специального значения, участвующие в движении клетки и внутриклеточных структур).

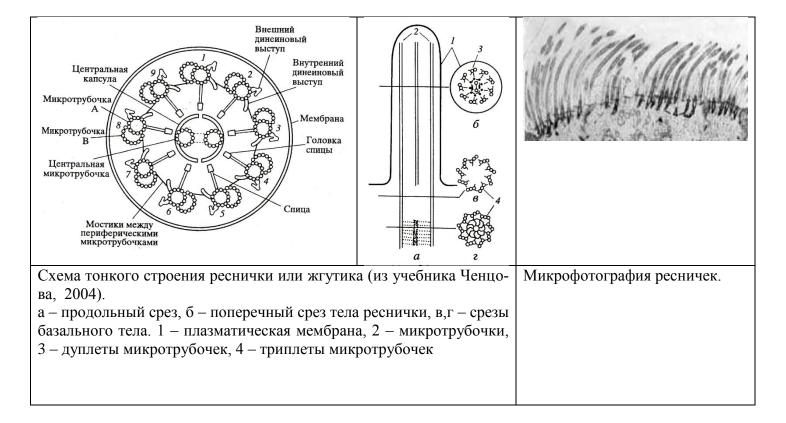
Встречаются в клетках реснитчатого эпителия, в сперматозоидах (жгутик), у простейших, у зооспор водорослей, мхов, папоротников и т.д.

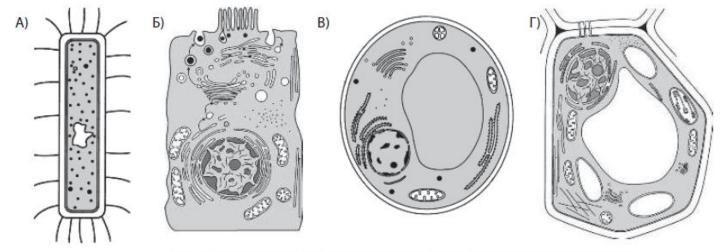
Клетки, имеющие реснички и жгутики, способны двигаться или обеспечивать движение тока жидкостей вдоль их поверхности.

<u>Длина ресничек меньше (5-10 мкм) чем жгутиков (может достигать 150 мкм).</u> Жгутик, как правило, один, а ресничек много.

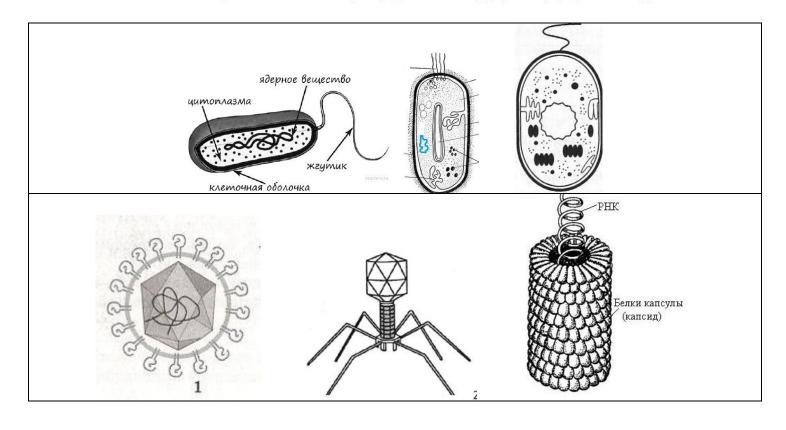
Строение:

Это выросты мембраны, состоящие из микротрубочек.

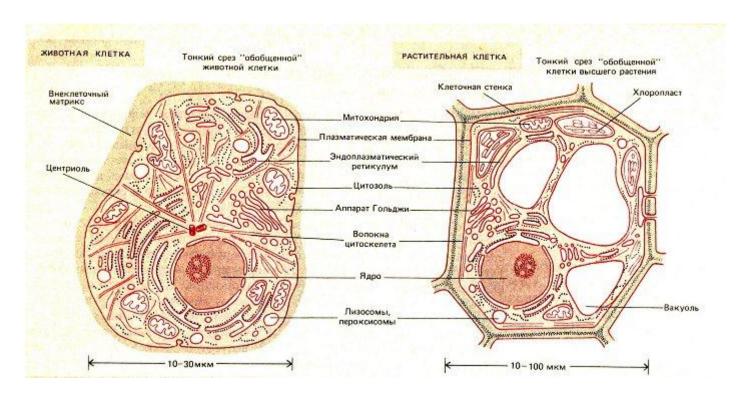

В основании ресничек и жгутика в цитоплазме видны - базальные тельца.

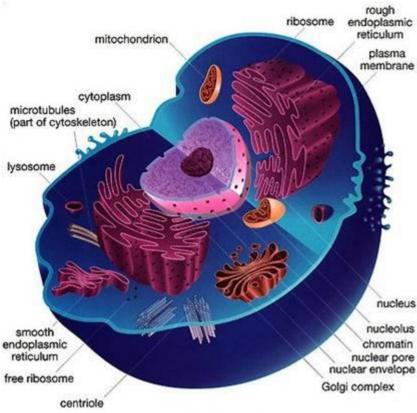

На поперечном срезе реснички или жгутика видно, что по периметру располагаются **9 пар** микротрубочек и в центре – центральная пара (9_2+2).

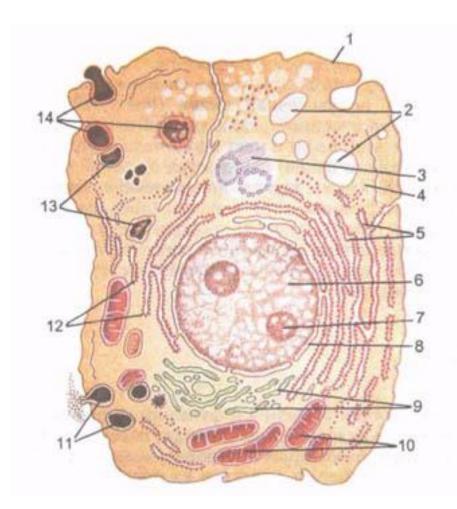
Между соседними периферическими парами имеются перемычки. От каждой периферической пары к центральной направлены радиальные нити (спицы).


Ближе к основанию реснички или жгутика (приближаясь к базальному телу) центральная пара MT обрывается и замещается полой осью. Периферические пары, проникая в цитоплазму, приобретают третью MT. В результате получается структура, характерная для базального тельца 9₃+0.

Жгутики отличаются от ресничек большей длиной.






Строение клеток бактерий (А), животных (Б), грибов (В) и растений (Г)

Признак	Бактерии	Животные	Грибы	Растения
Способ питания	Гетеротрофный или автотрофный	Гетеротрофный	Гетеротрофный	Автотрофный
Организация наследственной информации	Прокариоты	Эукариоты	Эукариоты	Эукариоты
Локализация ДНК	Нуклеоид, плаз- миды	гялро митохонлрии	Ядро, митохон- дрии	Ядро, митохондрии, пластиды
Плазматическая мембрана	Есть	Есть	Есть	Есть
Клеточная стенка	Муреиновая		Хитиновая	Целлюлозная
Цитоплазма	Есть	Есть	Есть	Есть
Органоиды	Рибосомы	INNAUULIE D TOM UIJCHE	Мембранные и немембранные	Мембранные и не- мембранные, в том числе пластиды
Органоиды движе- ния	Жгутики и вор- синки	жгутики и реснички	Жгутики и рес- нички	Жгутики и реснички
Вакуоли	Редко	Сократительные, пищеварительные	Иногда	Центральная ваку- оль с клеточным со- ком
Включения	Гликоген, волю- тин	Гликоген	Гликоген	Крахмал

Рис. 2. Схема ультрамикроскопическо го строения клетки.

1 - цитолемма (цитоплазматическая брана); 2 - пиноцитозные пузырьки; 3 - клеточный центр (цитоцентр); 4 - гиалоплазма; 5 — эндоплазматическая сеть; 6 - ядро; 7 - ядрышко; 8 - перинуклеарное простран-ство; 9 — внутренний сетчатый аппарат (комплекс Гольджи); 10 — митохондрии; 11 — секреторные вакуоли; 12 рибосомы; 13 - лизосомы; 14 - три последовательные стадии фагоцитоза.