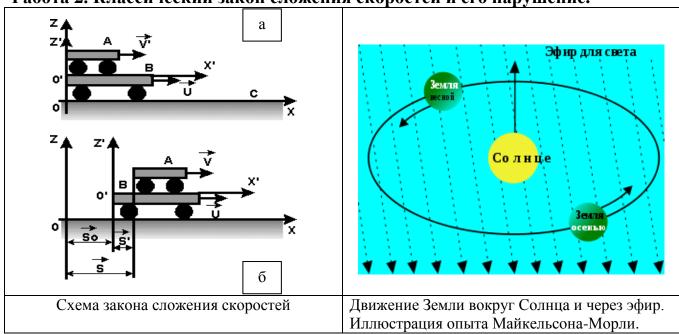
| <b>«</b> | <b>&gt;&gt;</b> | г. Занятие 5. | Зчаса |
|----------|-----------------|---------------|-------|
|          |                 |               |       |

# **Тема:** Эволюция представлений о пространстве и времени. Специальная и общая теории относительности.

## Принципы симметрии, законы сохранения.


#### Основные вопросы темы:

- 1. Пространство и время как основные фундаментальные формы существования материи. Понимание пространства и времени как инвариантных самостоятельных сущностей. Понимание пространства и времени как системы отношений между материальными телами.
- 2. Классический закон сложения скоростей. Концепция мирового эфира. Нарушение классического закона сложения скоростей в опыте Майкельсона-Морли.
- 3. Принцип относительности Галилея.
- 4. Постулаты специальной теории относительности Эйнштейна и их следствия. Соответствие СТО и классической механики.
- 5. Общая теория относительности (ОТО) и ее принципы. Взаимосвязь материи и пространства-времени. Соответствие ОТО и классической механики. Эмпирические доказательства ОТО.
- 6. Пространство и время в современной научной картине мира.
- 7. Понятие симметрии в естествознании. Нарушенные (неполные симметрии).
- 8. Простейшие симметрии.
- 9. Симметрии пространства и времени.
- 10. Анизотропность времени.
- 11. Законы сохранения.
- 12. Эволюция с точки зрения принципа симметрии.

Работа 1. Понимание пространства и времени.

| таобта 1. Понимание простран | erba i bocheni.                       |
|------------------------------|---------------------------------------|
| Понимание пространства и     | Понимание пространства и времени как  |
| времени как инвариантных     | системы отношений между материальными |
| самостоятельных сущностей    | телами.                               |
|                              |                                       |
| •                            | •                                     |
|                              |                                       |
|                              |                                       |
|                              |                                       |
|                              |                                       |
| •                            | •                                     |
|                              |                                       |
|                              |                                       |
|                              |                                       |
|                              |                                       |
|                              |                                       |

Работа 2. Классический закон сложения скоростей и его нарушение.



| •                                                            | Следствие ньютоновских представлений об Абсолютном пространстве и Абсолютном времени является                                                                             |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                            | Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и самой подвижной системы отсчёта относительно неподвижной. |
| Условия выполнения<br>закона                                 |                                                                                                                                                                           |
| •                                                            | Класс физических экспериментов, исследующих зависимость скорости распространения света от направления.                                                                    |
| Нарушение классического закона сложения скоростей показано в |                                                                                                                                                                           |
| Цель опыта<br>Майкельсона-Морли                              |                                                                                                                                                                           |
| Результат опыта<br>Майкельсона-Морли                         |                                                                                                                                                                           |
| •                                                            | Это предполагавшаяся ранее универсальная сплошная среда, заполняющая все мировое пространство, в том числе и промежутки между атомами и молекулами в телах.               |

| Изучение    | оптических   | И    | электро  | магнитных   | ЯВ.  | лений |
|-------------|--------------|------|----------|-------------|------|-------|
| показало    | несостоятел  | ьно  | сть г    | ипотезы     | 0    | его   |
| существован | нии как унив | epc  | альной и | механическо | ой с | реды: |
| современная | я физика счи | тае  | т, что в | пространст  | ве м | иежду |
| телами су   | иществуют    | разл | пичные   | физически   | e    | поля, |
| являющиеся  | н особыми фо | рма  | ми матеј | рии.        |      |       |

#### Работа 3. Системы отсчета.

| Работа 3. Системы о                              | отсчета.                                                                                                                                                                                                                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Системы (                                      | Положение движущегося тела в каждый момент времени определяется по отношению к некоторому другому телу, которое называется С этим телом связана соответствующая система координат, например декартова (x, y, z).  Они могут быть: |
|                                                  | •                                                                                                                                                                                                                                 |
| •                                                | Система, которая либо покоиться, либо движется прямолинейно и равномерно относительно какой-то другой системы, неподвижной или движущейся прямолинейно и с постоянной скоростью — называется                                      |
| •                                                | Система отсчета с началом в центре масс Солнечной системы и с осями (x, y, z) направленными на находящиеся в дали три звезды.                                                                                                     |
| •                                                | Системы, движущиеся с ускорением или замедлением. В принципе все системы отсчета являются таковыми. И поэтому абсолютного движения не существует, все движения совершаются относительно какой-либо определенной системы отсчета.  |
| равномерно и г                                   | системе отсчета никакими зя установить, покоиться ли она или движется прямолинейно. Т.е. во всех чета законы классической динамики имеют                                                                                          |
| одинаковую фо                                    |                                                                                                                                                                                                                                   |
| 1                                                | ачает, что уравнения динамики при переходе от одной системы к другой не изменяются, т.е. они                                                                                                                                      |
| ковариантны или инг                              | вариантны по отношению к преобразованию координат.                                                                                                                                                                                |
| Понимание пространства и врем в современной науч | иени                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                                                                                   |

Работа 4. Специальная теория относительности Эйнштейна (СТО). *А) Основные понятия и постулаты СТО*.

| Соответствие СТО и    |                                                      |
|-----------------------|------------------------------------------------------|
| классической механики |                                                      |
|                       |                                                      |
|                       |                                                      |
| •                     | Законы природы инвариантны относительно смены        |
|                       | системы отсчёта                                      |
|                       |                                                      |
|                       |                                                      |
| •                     | Постулаты Эйнштейна как проявление симметрий         |
|                       | пространства и времени.                              |
|                       | Скорость света во всех инерциальных                  |
|                       | системах отсчета – постоянна. Она самая              |
|                       | большая. Скорости тел меньшие скорости               |
|                       | света – всегда складываются, т.е.                    |
|                       | относительны.                                        |
|                       | (скорость света в вакууме одинакова во всех системах |
|                       | координат, движущихся прямолинейно и равномерно      |
|                       | относительно друг друга).                            |

Б) Следствия из постулатов Эйнштейна:

| Основные        |  |
|-----------------|--|
| релятивистские  |  |
| эффекты         |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
| П               |  |
| Примеры         |  |
| сокращение      |  |
| длины и         |  |
| замедление      |  |
| течения времени |  |
|                 |  |
|                 |  |

| Доказательством |  |
|-----------------|--|
| относительной   |  |
| одновременности |  |
| является        |  |
| Подтверждение   |  |
| эквивалентности |  |
| массы и энергии |  |
| является        |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |

Работа 5. Общая теория относительности Эйнштейна (ОТО).

А) Основные понятия и постулаты ОТО.

| Общая теория    | Это распространение принципа относительности на             |
|-----------------|-------------------------------------------------------------|
| относительности | системы отсчета.                                            |
| (OTO)           | Важнейшим выводом ОТО стала идея, согласно которой          |
|                 | изменения пространственных и временных характеристик тел    |
|                 | происходит не только при движении,                          |
|                 | как это было доказано в СТО, но и в полях.                  |
|                 | Одно из самых фантастических предсказаний – полная          |
|                 | остановка времени в очень сильном поле тяготения.           |
|                 |                                                             |
|                 | замедление времени очень                                    |
|                 | значительно вблизи нейтронных звезд, а у гравитационного    |
|                 | радиуса черной дыры оно столь велико, что время там с точки |
|                 | зрения внешнего наблюдателя замирает.                       |
| •               | ускоренное движение неотличимо никакими измерениями от      |
|                 | покоя в гравитационном поле.                                |
| Взаимосвязь     |                                                             |
| материи и       |                                                             |
| пространства-   |                                                             |
| времени         |                                                             |
| Соответствие    |                                                             |
| ОТО и           |                                                             |
| классической    |                                                             |
| механики        |                                                             |
| Эмпирические    |                                                             |
| доказательства  |                                                             |
| OTO:            |                                                             |
|                 |                                                             |
|                 |                                                             |

## Б) Эмпирические доказательства ОТО

| <b>Б)</b> Эмпирические оока | зательства ОТО                                          |
|-----------------------------|---------------------------------------------------------|
| •                           | Согласно Ньютону, ближайшая к Солнцу точка эллипса      |
|                             | не должна менять своего положения по отношению к        |
|                             | «неподвижным» звездам. Однако, около 100 лет тому назад |
|                             | было обнаружено малое перемещение перигелия Меркурия,   |
|                             | которое даже с учетом возмущений других планет не       |
|                             | удалось объяснить исчерпывающим образом.                |
|                             | Чем дальше находится планета от Солнца тем меньше       |
|                             | сказывается его влияние на планету и тем труднее        |
|                             | обнаружить этот эффект.                                 |
| •                           | Отклонение световых s' <b>★</b>                         |
|                             | лучей от звезды S при                                   |
|                             | прохождении около Солнца                                |
|                             | от прямолинейной                                        |
|                             | траектории, обусловлено                                 |
|                             | действием массы Солнца и                                |
|                             | вызывает смещение                                       |
|                             | кажущегося положения                                    |
|                             | звезды в точку S'.                                      |
| •                           | Ритм часов, помещенных вблизи поля тяготения Солнца,    |
|                             | сильно отличается бы от ритма часов, находящихся в      |
|                             | поле тяготения Земли.                                   |
| •                           | Движение субъектов А и В с                              |
|                             | экватора точно на север по                              |
|                             | параллельным траекториям.                               |
|                             | Встречаясь на какой-то                                  |
|                             | параллели, они замечают, что ( 🛕 🛕 )                    |
|                             | расстояние между ними                                   |
|                             | ymenbining epublication c                               |
|                             | первоначальным и это, как будто                         |
|                             | вызвано какой-то «силой»,                               |
|                             | притягивающей их.                                       |

## Работа 6. Понятие симметрии и асимметрии в естествознании.

| • | Данное понятие означает                                    |
|---|------------------------------------------------------------|
|   | • неизменность физических величин или свойств природных    |
|   | объектов при переходе от одной системы отсчета             |
|   | (координат) к другой.                                      |
|   | - Смещение во времени и пространстве не влияет на          |
|   | протекание физических процессов.                           |
| • | Данное понятие означает инвариантность относительно тех    |
|   | или иных преобразований. Т.е. неизменность каких-либо      |
|   | свойств и характеристик объекта по отношению к каким-либо  |
|   | преобразованиям над ними.                                  |
| • | Данное понятие отражает существующее в объективном мире    |
|   | нарушение порядка, равновесия, относительной устойчивости, |

|                | пропорциональности и соразмерности между отдельными     |
|----------------|---------------------------------------------------------|
|                | частями целого, связанное с изменением, развитием и     |
| -              | организационной перестройкой.                           |
| Формы          |                                                         |
| симметрии и их |                                                         |
| примеры        |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
|                |                                                         |
| Неполные       |                                                         |
| симметрии и их |                                                         |
| примеры        |                                                         |
| примеры        |                                                         |
|                |                                                         |
| •              | Явление, которое выражается в существовании необратимых |
|                | процессов.                                              |
|                | Философская и естественнонаучная проблема, исторически  |
|                | связанная с началами термодинамики и понятием энтропии. |
| •              | Это явление направленности событий от прошлого к        |
|                | будущему.                                               |
|                |                                                         |
|                | Время течет от прошлого через настоящее к будущему,     |
|                | отсюда <mark>«</mark>                                   |
|                |                                                         |
|                | Формы:                                                  |
|                |                                                         |
|                |                                                         |
|                | •                                                       |
|                |                                                         |
|                |                                                         |
|                |                                                         |

Работа 7. Простейшие симметрии.

| Примеры простейших симметрий и их характеристика | •                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Симметрии пространства и времени                 | •                                                                                                                                                                                                                                                                    |
| •                                                | Данное явление заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета. |
| •                                                | Данное явление означает инвариантность физических законов относительно выбора начала отсчета времени.                                                                                                                                                                |
| •                                                | Данное явление означает инвариантность физических законов относительно выбора направления осей координат системы отсчета, т.е. относительно ее поворотов в пространстве на любой угол.                                                                               |

Работа 8. Законы сохранения.

| Two two to contour to promotions |                                                                                                                                                                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                | «В системе тел, между которыми действуют только                                                                                                                                                                                                |
|                                  | консервативные силы, полная механическая энергия                                                                                                                                                                                               |
|                                  | сохраняется, т.е. не изменяется со временем».                                                                                                                                                                                                  |
| •                                | «Импульс замкнутой системы сохраняется, т.е. не изменяется                                                                                                                                                                                     |
|                                  | с течением времени».                                                                                                                                                                                                                           |
| •                                | «Момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени».                                                                                                                                                        |
| •                                | Это общее утверждение о взаимосвязи симметрий с законами сохранения: «Из однородности пространства и времени следуют законы сохранения соответственно импульса и энергии, а из изотропности пространства — закон сохранения момента импульса». |
| Запишите,                        | • Закон сохранения импульса является следствие                                                                                                                                                                                                 |
| следствием каких                 | ·                                                                                                                                                                                                                                              |
| симметрий                        | • Закон сохранения момента импульса является следствием                                                                                                                                                                                        |
| являются законы                  |                                                                                                                                                                                                                                                |
| сохранения                       | ■ Закон сохранения механической энергии является                                                                                                                                                                                               |
|                                  | следствием                                                                                                                                                                                                                                     |

Преподаватель: